Formal appreciation of art

Maksym Zhuravinskyi

Supervisor

Andriy Gazin

June 26, 2022

Objective

Capture multimodal subjective preference with $\kappa : \mathbb{R}^n \to \mathbb{R}$

 $\stackrel{?}{>_{\kappa}}$

And ever changing, like a joyless eye That finds no object worth its constancy

Related work: Formal Theory of Creativity

Among comparable observations the subjectively most beautiful is the one with the shortest description (Schmidhuber 2012)

$$B(D \mid O, t) = -C(p(t), D)$$
$$I(D \mid O, t) = \frac{\partial B(D \mid O, t)}{\partial t}$$

Beauty is the negative number of bits needed to encode D with observer's model p(t). Interestingness is the derivative of beauty.

Background: λ -calculus

Descriptions are equivalent to λ -terms, where a λ -term is either a:

- Variable *a*, where the symbol *a* is drawn from infinite alphabet
- Application (ab), if a and b are λ -terms
- Abstraction ($\lambda a.b$), if *a* is a variable and *b* is a λ -term

$$\begin{split} 1 &\longleftrightarrow \lambda sz.sz \\ 2 &\longleftrightarrow \lambda sz.s(sz) \\ + &\longleftrightarrow \lambda mnsz.ms(nsz) \end{split}$$

Figure: Encoding into λ -term

$$\begin{array}{c} ((\lambda a.b)c) \longrightarrow_{\beta} [a \rightarrow c]b \\ (+1\,2) \longrightarrow_{\beta^{*}} 3 \end{array}$$

Figure: Reduction of λ -term

Background: λ -calculus

$$(+12) \longrightarrow_{I\beta} ((\lambda x.(+1x))2)$$
$$1+2 \longrightarrow_{I\beta} f(2) \text{ where } f(x) = 1+x$$

Figure: Abstraction of λ -term

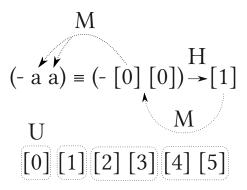
$$|a| = 1$$
 if *a* is a variable or constant
 $|(ab)| = |a| + |b|$
 $|(\lambda a.b)| = |b|$

Figure: Length of λ -term

Background: Equivalence graph

E-graph is a tuple (U, M, H) relating e-classes (sets of e-nodes)

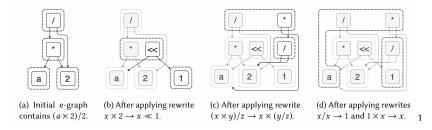
- U disjoint-set (union-find) over e-class ids
- M mapping between e-class ids and e-classes
- H mapping between e-nodes and e-class ids



Background: Equality saturation

- Saturation: With a set of rewrite rules Λ = {λ_ℓ ↔ λ_r} and given a term *x* find all equivalent terms x^Λ modulo Λ, by applying all rules perpetually until fixed-point
- 2. Extraction: Among x^{Λ} pick the most optimal term x_*^{Λ}

Example of $(a \times 2) / 2 \longrightarrow a$



¹(Willsey et al. 2021)

Semi-Formal view

Saturation: making of descriptions

 $x \longrightarrow x_0^{\Lambda} \xrightarrow{\Lambda} x^{\Lambda} \longrightarrow x_*^{\Lambda}$

Abstraction: improvement of descriptions

 $\Lambda, x^{\Lambda} \xrightarrow{\lambda} \Lambda_+, x^{\Lambda_+}$

- 1. By virtue of making sense of observations, one has to acquire certain abstractions
- 2. Observations are as good as useful are abstractions present in their descriptions
- 3. All possible descriptions are taken into account, in all contexts, discounted by some prior
- 4. Goodness of an abstraction is measured as far as it helps in simplifying observer's history of observations

Formal view

- 1. Observer's aim: $\min_{\Lambda} |H_*^{\Lambda}|$ or $\min_{H,\Lambda} |H_*^{\Lambda}|$ (Friston 2010)
- 2. Observer's tool: $\Lambda = \{\lambda\} = \{\lambda_\ell \longleftrightarrow \lambda_r\}$
- 3. Observer's observations: $x \subset H = ... 11011110101010101$
- 4. Observer's descriptions: $x^{\Lambda} = \{x_m^{\Lambda}\} = \{\lambda_n \mid \lambda_n \longleftrightarrow x_0^{\Lambda}\}$
- 5. Observer's refactorings: $\lambda(\mathbf{x}^{\Lambda}) = \{\lambda \mid \lambda \in I\beta^*(\mathbf{x}_m^{\Lambda})\}$
- 6. Abstraction's utility:

$$\begin{split} \kappa(\lambda \mid \mathbf{x}_{m}^{\Lambda}, \Lambda) &= 2^{|\mathbf{x}_{m}^{\Lambda-\lambda}| - |\mathbf{x}_{m}^{\Lambda+\lambda}| - |\lambda|} \\ \kappa(\lambda \mid \mathbf{x}, \Lambda) &= \sum_{m}^{|\mathbf{x}^{\Lambda}|} 2^{|\mathbf{x}_{*}^{\Lambda}| - |\mathbf{x}_{m}^{\Lambda}|} \, \kappa(\lambda \mid \mathbf{x}_{m}^{\Lambda}, \Lambda) \end{split}$$

7. Observation's utility:

$$\kappa(\mathbf{x} \mid H, \Lambda) = \sum_{\lambda \in \lambda(\mathbf{x}^{\Lambda})} \frac{\kappa(\lambda \mid \mathbf{x}, \Lambda)}{|\lambda(\mathbf{x}^{\Lambda})|} \kappa(\lambda \mid H, \Lambda)$$

Example: Number-list language

-

Table: Primitives from the number-list language

name	description	λ -term
0	zero	$(\lambda sz.z)$
S	successor of natural number	$(\lambda nsz.(s((ns)z)))$
ø	empty list	$(\lambda \mathbf{x}.\mathbf{x})$
•	list constructor	$(\lambda htf.((fh)t))$

$$\begin{split} \mathbf{x} &= [1,2,3] \\ \mathbf{x}_0^{\Lambda} &= (. \; (S\;0) \; (. \; (S\;(S\;0) \; (. \; (S\;(S\;0))) \; \mathbf{ø}))) \end{split}$$

Figure: Example of an observation

Example: Abstractions

$$\mathbf{x}_{0}^{\Lambda} = (. \ (S \ 0) \ (. \ (S \ (S \ 0) \ (. \ (S \ (S \ 0))) \ \mathbf{\emptyset})))$$

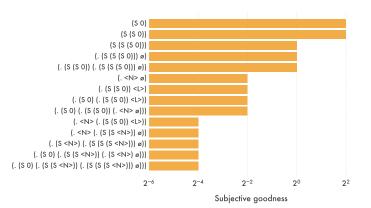


Figure: Relative goodness of abstractions from $\lambda(\mathbf{x}_0^{\Lambda})$

Example: Saturated observation

starts-with-1-and-2
$$\longleftrightarrow$$
 ($\lambda x.(. (S 0) (. (S (S 0) x)))$
ends-with-3 \longleftrightarrow (. ($S (S (S 0)) ø$)

Figure: Selected abstractions

$$\begin{aligned} x_1^{\Lambda} &= (\text{starts-with-1-and-2} (. (S(S(S))) \emptyset)) \\ x_2^{\Lambda} &= (. (S0) (. (S(S0)) \text{ ends-with-3}) \\ x_*^{\Lambda} &= x_3^{\Lambda} = (\text{starts-with-1-and-2 ends-with-3}) \end{aligned}$$

Figure: Example of a saturated observation with selected abstractions

Example: Scale language

Table: Primitives from the scales language

\mathbb{N}	natural numbers (Church numerals)
minor, diminished, etc.	scales
$scale[\mathbb{N}]$	indexing of the scale
$\mathbb{N} + scale[\mathbb{N}]$	shift key of the scale (e.g. Db minor)
\uparrow,\downarrow	next, previous index (+1, -1)
loop $\mathbb{N}\uparrow,\downarrow$	repeat $\uparrow,\downarrow\mathbb{N}$ times

- 1. Db chromatic[1] \longleftrightarrow Db minor[1] \longleftrightarrow C locrian[2] \longleftrightarrow . . .
- 2. $D\flat$ minor[1], $D\flat$ minor[2] \longleftrightarrow $D\flat$ minor[1, 2]
- 3. $D\flat$ minor[1, 2] \longleftrightarrow $D\flat$ minor[1, \uparrow]
- 4. $D\flat$ minor[\uparrow] \longleftrightarrow $D\flat$ minor[loop 1 \uparrow]
- 5. Db minor[loop $\mathbb{N}\uparrow,\uparrow$] \longleftrightarrow Db minor[loop $\mathbb{N}+1\uparrow$]

Figure: Abstractions for the scales language

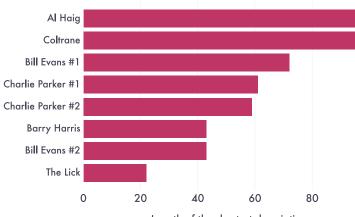
Example: Jazz licks descriptions



Example: Jazz licks descriptions

Charlie Parker #1

Example: Jazz licks descriptions

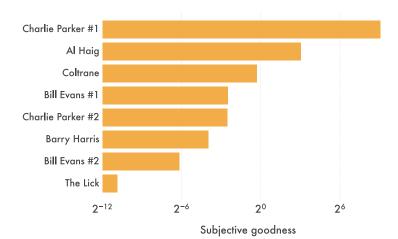


Length of the shortest description

Example: Comparison

Set *H* in $\kappa(x \mid H, \Lambda)$ to the concatenation of all licks

 $\kappa(\mathbf{x} \mid \mathbf{H}, \Lambda) \neq -|\mathbf{x}_*^{\Lambda}|$



Critique

- 1. " λ -calculus is an overkill, it's usage is vague"
 - $\lambda\text{-calculus}$ is much more commonplace nowadays than alternatives
 - Both major works we rely on (Willsey et al. 2021; Ellis et al. 2021) use it ubiquitously
 - 3-page proof of completeness and consistency of inverse beta-reduction (Ellis et al. 2021)
- 2. "The selection of scales in the language needs to be argued more" / "why not consider other type of chords"
 - It is most certainly not a complete language, but a proof of concept
- 3. "The resulting most useful abstractions are neither presented nor explained."
 - They are both presented and explained in the case of number-list language
 - In the case of scales language their presentation would require too much explaination

Contribution

1. Python e-graph implementation

- ~500 LOC, however no optimizations
- Alternative: Quiche (EGRAPHS'22), also no optimizations
- Alternative: python FFI to egg (Willsey et al. 2021)
- 2. Musical analysis on e-graphs
 - Original, however not complete
 - Almost complete with (Nandi et al. 2021)
- 3. Multimodal subjective comparison
 - Purely conceptual
 - Lacking similarity

References

Ellis, Kevin et al. (2021). "DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning". In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. New York, NY, USA: Association for Computing Machinery, pp. 835–850. ISBN: 9781450383912. URL: https://doi.org/10.1145/3453483.3454080. Friston, Karl (2010). "The free-energy principle: a unified brain theory?" In: Nature reviews neuroscience 11.2, pp. 127–138. Nandi, Chandrakana et al. (Oct. 2021). "Rewrite Rule Inference Using Equality Saturation". In: Proc. ACM Program. Lang. 5.OOPSLA. DOI: 10.1145/3485496. URL: https://doi.org/10.1145/3485496.

Schmidhuber, Jürgen (2012). "A formal theory of creativity to model the creation of art". In: *Computers and creativity*. Springer, pp. 323–337.

Willsey, Max et al. (2021). "Egg: Fast and Extensible Equality Saturation". In: *Proc. ACM Program. Lang.* 5.POPL. DOI: 10.1145/3434304. URL: https://doi.org/10.1145/3434304.

Afterword

Raninchen und Ente.

- 1. Rabbit
- 2. Duck
- 3. Duck-Rabbit (a picture which is two things: rabbit & duck)
- 4. Textbook example of tricks in perception
- 5. Wittgenstein's duck-rabbit
- 6. Picture associated with Wittgenstein, even though he attributed it to Jastrow, who had taken it from Harper's Weekly issue of November 19th 1892, whose editors had taken it ...