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“Perfect is the enemy of good”

Voltaire, Questions sur l’Encyclopédie

“He gets all applause who has mingled the useful with the pleasant”

Horace, Ars Poetica

“My speech is imperfect. I speak in images. With nothing else can I express the words from the
depth”

Jung, Red Book
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Abstract

Our objective is to construct a simple computation model of perception in order to express
a subjective comparison between two objects based on their extrinsic ability to be perceived
in the eyes of an observer and their effect on the observer’s world perception. The basis of
the comparison we’re interested in is often referred to as beauty, salience, interestingness,
or aesthetic preference, yet we concede the completeness with which these notions are
tasked to deal in favor of a core, conceptual formalism. We express perception’s end goal
to be making short descriptions of objects within some language and formalize this process
with equality saturation. We examine mechanisms aiding the improvement of language to
keep descriptions short and how it relates to perceived objects’ relative worthiness given
an observer’s language and history of experience.
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Chapter 1

Introduction

With the advent of ubiquitous deep generative models that have uncharted scaling limits
(Gwern, 2020b) and which, in principle, can generate almost anything, a large subset of
which attempts to create art specifically (visual (Ramesh et al., 2022), music (Dhariwal et
al., 2020), fiction (Gwern, 2020a)), a captious question arises: artistically speaking is any of
it good? Or rather: can the artistic value be explained formally, in the same or similar way
as the artwork can be generated? Formal methods of judging artistic value are severely lag-
ging behind those of generation, and unlike any other technology which redefined the art
and lowered the skill threshold needed for its creation (camera, digital audio workstation),
generative models, unless constrained, are destined for a complete informational flood with
their artistry without requiring any human input whatsoever. There is already a surplus
of the creative content of various quality, some of it already generated, and by the sheer
amount, natural discoverability becomes pointless. Recommendation engines and algorith-
mic feeds only partially solve the problem (or maybe exacerbate, given the tendency of
over-reliance on and even anthropomorphization of the algorithm itself (Freeman, Gibbs,
and Nansen, 2022)), since they operate on tangential metrics such as engagement, gaming
which has turned into an industry of its own.

But that’s only a tiny sliver of the problem, or rather something taken from the zeitgeist,
yet we’re interested in far detached questions: what are things really, and what is their
worth? How do we attribute the concept of beauty to some specific objects? How can the
very same objects be seemingly inconspicuous or even debased in the eyes of a different
observer? These questions were tried for centuries and given their monumentally, only
with partial success. We will also take our chance at attempting to address those. However,
our methodology will, by design, be too elementary to grapple with them in their entirety,
nor will it surpass any of the existing philosophical treatment, and it will also lack the
empirical evidence justifying itself. Despite that, we hope it will offer a straightforward
and uncomplicated model formalizing the artistic value by relying upon as little as possible.

Concretely our objective is to construct a mapping from any object (either tangible or
abstract) to a real value, which we call the subjective goodness that will serve as a proxy
for a measure of beauty, aesthetic, or artistic value, but we leave the tightening of this con-
nection, perhaps with real-world experiments, for the future work. There already has been
convincing and also theoretical research in connecting beauty with simplicity framed in
terms of algorithmic complexity (Section 2.1). However, we think that the generality in
its formulation (it operates on opaque terms) and in its result (it’s way too generous) is
incomplete. Here, we want to sacrifice a level of generality to gain a closer look at possi-
ble mechanism of how an observer might judge the artistic value of objects based on how
he makes descriptions of them. While the process of describing is often associated purely
with communication, we equate perception as making descriptions for one-self, perhaps in
a language that has no requirement of being understandable by others or being utterable
at all. We make descriptions in the form of programs using lambda-calculus (Section 3.1),
which upon execution, reproduce an object losslessly. Then we give motivation as to what
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is a prerequisite for a system that makes such descriptions, which we call a language (Sec-
tion 4.1), and how we can extend it in order to render it to be more efficient, which we call
abstraction (Section 4.2). Then we describe a procedure for making and storing multiple
descriptions with e-graphs (Section 4.3) and then explain what we think the object’s wor-
thiness is (Section 4.4). After we give preliminary examples both in a trivial domain (Section
5.1) and music domain (Section 5.2) of what we mean by descriptions and abstractions and
give an example of our objective, a subjective goodness mapping, in action.
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Chapter 2

Related work

2.1 Formal Theory of Creativity

Formal Theory of Creativity (Schmidhuber, 2008; Schmidhuber, 2010) describes beauty in
the context of reinforcement learning (Kaelbling, Littman, and Moore, 1996) and recurrent
neural networks (Hochreiter and Schmidhuber, 1997). It asserts that a reinforcement learn-
ing agent’s (observer’s) main objective, subserving the objective put up by the environment
he is in, is to compress its history of observations or more formally is to maximize an in-
trinsic reward signal rint as a function1 measuring the rate of change in the efficiency of the
observer’s compression algorithm applied on agent’s observation history h(≤ t+ 1).

rint(t+ 1) = f(C(p(t), h(≤ t+ 1)), C(p(t+ 1), h(≤ t+ 1)))

Using the observer’s computationally limited encoding model p(t), C(p(t),H(≤ t + 1))
is the number of bits needed to encode his history bounded from below by Kolmogorov
complexity K(h(≤ t + 1)) (Kolmogorov, 1965; Solomonoff, 1964; Chaitin, 1966). Beauty
B(D | O, t) of a piece of data D for an observer O at time t is defined as a negative num-
ber of bits required to encode D given the observer’s state, implying that the subjectively
most beautiful is the one with the shortest description length using the observer’s particu-
lar method of compression. Additionally, subjective interestingness, surprise, or aesthetic
value I(DO, t) is defined as the first derivative of subjective beauty:

B(D | O, t) = −C(p(t), D)

I(D | O, t) =
∂B(D | O, t)

∂t

As a result, an observer wants to seek novel observations but still orderly enough to
be compressible on time, riddled with undiscovered patterns or symmetries, yielding an
improvement to the observer’s model of the world in the fastest way possible. Given its
simplicity, the theory knowingly gives up on the notion that an object might be beautiful
because it reminds of or references something, but rather it judges its form only. Neverthe-
less, there is also an inconsistency: in the example given in (Schmidhuber, 2008; Schmid-
huber, 2012), a pitch-black room viewed by a vision-based agent has to be boring and not
interesting, yet according to the theory, it remains beautiful due to its almost non-existent
complexity. And if we compare a dimmed Louvre with the same empty dark room, the lat-
ter being far more compressible no matter how much any observer can become acquainted
with either, implying that it is also far more beautiful is surely inadmissible. Instead, to
confine beauty with more precision, we might have to investigate further intermediaries of
the encoding process itself. Our approach described here will not deviate greatly, at least

1This definition is copied ad verbatim for consistency, however by f , f(a, b) = a− b is implied
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ideologically, from this theory, in so far as we delegate all our philosophical line of reason-
ing to it. And while it may be possible to frame it in the spirit of this work instead, not
devoid of the said spirit, we will try to delineate beauty using methods that give concrete
descriptions of objects using lambda calculus and equivalence graphs.
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Chapter 3

Background

3.1 Lambda calculus

Lambda calculus (hereafter referred to as λ-calculus) is a simple formal system and a nota-
tional tool discovered by Alonzo Church during the 1930s (Hindley and Seldin, 2008), which
is capable of representing every computable function using an intuitively simple syntax:
keywords ”λ” and ”.” together with parenthesis ”(”, ”)” and an infinite alphabet to disam-
biguate the naming of variables are sufficient. An expression (also referred to as a λ-term)
from λ-calculus is either a:

1. Variable a, where the symbol a is drawn from some infinite alphabet.

2. Application (ab), if a and b are λ-terms

3. Abstraction (λa.b), if a is a variable and b is a λ-term

Abstraction is the central idea in λ-calculus, it formalizes a function of one variable, for
example (λa.b) is akin to a function of variable awhich if contained within function’s body
b would be bound to the argument supplied upon an application. The function of multi-
ple variables can be expressed as the chaining of abstractions (λa.λb.λc.d) which is often
shorthanded notationally to (λabc.d). To compute in lambda calculus means to simplify the
application of abstraction ((λa.b)c), which is called a redex, and for that, we need a single
rule called β-reduction:

((λa.b)c) −→β [a→ c]b

Where [a → c] is an operation which replaces every occurrence of bounded variable a
with c. A term without redexes or equivalently a term in which β-reduction is no longer
applicable is said to be in the β-normal form and treated as a final result of a computation.
Not every term has a β-normal form, but if the term has a β-normal form, it has only a
single one (up to renaming of binding variables, which is called α-reduction). Because of λ-
calculus pureness, to compute something useful, we need to overlay special interpretations
to certain terms, a process called the Church encoding. For example, to compute something
with numbers, we first need to define what numbers are (Figure 3.1).

This particular encoding of numbers is not the only one possible similarly, as there
are numerous ways to interpret a collection of bits, few equivalent extensionally, there are
plenty of ways of defining numbers together with operations on them in λ-calculus. In
most cases, it’s practical to extend λ-calculus to permit constants without explicit encoding,
assuming there always is one, leaving its meaning to be interpreted during the reduction.
To show an example of reduction, we define a successor function S which takes a single
number as an argument and increases it by 1 (Figure 3.2).

There is also exists an opposite operation to β-reduction — an inverse β-reduction, also
referred to as β-expansion or abstraction as a verb. The idea is to abstract away from the
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0←→ (λsz.z)

1←→ (λsz.(sz))

2←→ (λsz.(s(sz)))

...
n←→ (λsz.(snz))

FiguRe 3.1: Encoding known as Church numerals, arrow represents encod-
ing

S ←→ (λnsz.(s((ns)z)))

(S 0)←→ ((λnsz.(s((ns)z)))(λsz.z))

−→β (λsz.(s(((λsz.z)s)z)))

−→β (λsz.(s((λz.z)z)))

−→β (λsz.(sz))

←→ 1

FiguRe 3.2: Successor function and an example of β-reduction

specifics of the term one step at a time:

(ab) −→Iβ ((λx.(xb))a)

(ab) −→Iβ ((λx.(ax))b)

Also, we want to extract the set of all possible abstractions from the exact λ-term, using
inverse β-reduction but while discarding the final application:

λ1(a) = {(λx.b) | ∃c ((λx.b)c) −→β a}

For example the expression 1 + 2, and the corresponding λ-term ((+ 1) 2), would abstract
in one step to an ”add-1” abstraction f(x) = 1+x, ”add-2” abstraction f(x) = x+2 and the
”binary-apply” abstraction f(g) = g(1, 2). These abstractions would form a set λ1(1 + 2),
and to extract more abstract abstraction we repeat the same process until the fixed-point is
reached, that is λ2(a) = λ1(λ1(a)) and λ(a) = λ∞(a). Lastly, and also most importantly,
we need the length of λ-terms which we define as:

|a| = 1 if a is a variable or constant
|(ab)| = |a|+ |b|
|(λa.b)| = |b|
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Chapter 4

Approach

4.1 Motivation

Before we can speak of comparing things, we must have a way of representing them first.
Since most of the art we consume nowadays comes primarily through digital screens, we
assume any art we’re interested in can be digitized and therefore can be shaped into a repre-
sentation that corresponds to universal computers, be it combinatory logic, λ-calculus, type
system etc. (Morales, 2018). While it might be more proper to focus on how human minds
represent things, there is no consensus on how exactly it is, and be it either in a language
of thought (Fodor, 1975) or through pure connectionism (Bechtel, 1991), we assume that
at least same simplicity and laconisity which will be essential for our purposes must also
be present in whichever it is, since human mental capacity is limited. Yet our goal here is
an accurate model of human aesthetics, but something far more elementary, which is why
the question of exact representation for us is not crucial. Therefore by perceiving or repre-
senting an object, we mean to compress its description from a crude sensory input to some
sparse coding. Despite an inevitable loss of information, those two descriptions can remain
equivalent in most contexts, with the benefit of one being much shorter. Such distillation
of information is done by compression algorithms, creation of which is a challenging task
in the most optimal sense since there exists an uncomputable limit, approximating which
is also a long-standing problem in a practical sense (Hutter, 2006), so challenging that the
compression has been closely associated with both comprehension (Chaitin, 2004) and in-
telligence (Hutter, 2009) itself. While there is ongoing research as to through what exact
schema compression manifests inside our brains (Kwak and Curtis, 2022), we can at least
see the impact of it in our daily language: we use abbreviations, we invent new words to
refer to specific events, in the end, we imply things by using silence, all to not speak a single
syllable more than needed.1 We use this analogy to refer to a stateful part of the observer’s
compression algorithm as an observer’s language.

4.2 Language

Here we consider languages in which there is always at least a procedure to describe objects
in terms of bare primitives, albeit rather redundantly, and starting from this primitive de-
scription we use the capacity of language to further compress it. More precisely we define
a language Λ to be a set of pairs of descriptions that can be used interchangeably:

Λ = {λ} = {λℓ ←→ λr}
1Natural languages are still redundant character-wise, yet most of misinterpretations and inconsistencies

come primarily from being overly succinct
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With each side of such pair there is a corresponding length measure, here in place of
descriptions we use λ-terms, so the length of the description is the length of the corre-
sponding λ-term. Pairs of descriptions (which we call abstractions or equivalences) don’t
have to be non-overlapping or exclusive, which implies that there can be multiple ways to
describe the same thing. For an object xwe notate xΛ to be the set of all descriptions in the
language Λ equivalent to the one made primitively which is notated by xΛ0 , while all other
individual descriptions are notated by xΛk and the shortest one is xΛ∗ . Equivalences can be
brought up either by a process of renaming (”the Sun”←→ ”the star from the Solar System”
or length-of-lists(ℓ)←→ (map len ℓ)) like in Dreamcoder (Ellis et al., 2021) where language is
referred to as a library, or by enumerating expressions finding ones semantically equivalent
(|a|2 ←→ a2) as in Ruler (Nandi et al., 2021) where language is referred to as rewrite rules.
In both of these systems, every new abstraction brings an exponential cost associated with
it, so the introduction of new ones has to be considered carefully. Moreover, there exists a
danger of unintentionally equating one too many things, rendering the whole language to
be totally inconsistent2. Here, similarly to a ”crude” Minimal Description Length objective
(Grunwald, 2004) we aim to make short descriptions while not complicating the language
itself too much. Thus we define the helpfulness or goodness of each abstraction so far as
it helps in compressing a description of an object, in the number of symbols saved when
employing it versus when not, plus the additional cost of the definition:

logκ(λ | xΛ∗ ,Λ) = |xΛ−λ
∗ | − |xΛ+λ

∗ | − |λ| (4.1)

Where Λ+λ and Λ−λ are languages with or without an abstraction λ, and the length
of the definition of λ is the length of both its sides |λℓ|+|λr|. Hence an observer must refine
his language stripping it from archaic words and adding new apt ones that use abstractions
which are easy to define in terms of his current language and help describe many things in
the clearest way possible.

4.3 Confluent descriptions

To create and compactly represent each description, we use an e-graph (equivalence graph)
data structure (Nelson, 1980), which groups together equivalent descriptions into disjointed
sets called e-classes, enabling resharing common parts of them without redundancy. Start-
ing from the primitive description, to create new ones we use equivalences from the lan-
guage and e-matching algorithm from Simplify theorem prover (Detlefs, Nelson, and Saxe,
2005), which scans an e-graph for the already present one side of equivalence and instan-
tiates and equates with it its other side, given proper substitutions if any, while also mak-
ing sure that any two descriptions which include each of two sides of the newly found
equivalence are also made equivalent, in other words maintaining congruence relation
a ≡ b =⇒ f(a) ≡ f(b). Emerging equivalences enable finding more equivalences,
so e-matching proceeds indefinitely until a fixed point, when any subsequent appliance of
e-matching doesn’t change the e-graph in any way, at which point the e-graph is saturated.
After that, wemaywant to select a single representative descriptionwith theminimal length
or some other optimal description according to some cost function, using the e-class analy-
sis technique described in the egg library (e-graph good) (Willsey et al., 2021). Importantly,
during the process of saturation, the information only accumulates, allowing for us, in the
end, to operate over both the initial description, the most optimal one, and any descriptions
in-between at the same time. Thus we can extend the notion of the goodness of abstraction

2As does equating true with false, or λxy.x with λxy.y equivalently
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(Equation 4.1) over all possible descriptions of an object discounted by their importance:

κ(λ | x,Λ) =
|xΛ|∑
m

2|x
Λ
∗ |−|xΛ

m| κ(λ | xΛm,Λ) ≥ κ(λ | xΛ∗ ,Λ) (4.2)

We judge short descriptions to be more important than longer ones, whereas the role of
degeneratively long descriptions is nullified. It is done in a similar vein as with algorithmic
probability (Solomonoff, 1964), with the difference being that we care only about the relative
length in comparison with the shortest description. This way, we don’t overlook inherently
long descriptions by themselves, but the input of each alternative description diminishes
with its length, and if there ismore than one equally short description, each reusing the same
abstraction, their contribution is, on the contrary, compound. By different descriptions, we
mean everything which can be said about the object and just as objects or events with
multiple interpretations, yet each being drastically different or rooted in many contexts are
not uncommon, as they are foundational for making jokes, for example, here we’re treating
them as efficient storage of abstractions.

The reason we use e-graphs for the production of descriptions, instead of more com-
plete methods like enumeration search over the language, is that the former is far more
tractable, and we think it reflects how descriptions are made by us in our languages since
every description produced in this way will relate to our data unlike in the case of enumer-
ation. Nevertheless, to create even shorter descriptions we would need to resort to some
form of enumeration in order to extend our language with useful abstractions, and this is
how we transition from measuring lone abstractions’ goodness to the goodness of objects
themselves.

4.4 Goodness

”A book or a speech for example is said to have a great deal in it, to be full of content in
proportion to the greater number of thoughts and general results to be found in it” (Hegel,
1874). So far, we’ve examined the goodness of individual abstractions (thoughts, results,
propositions), but where from should they come? While making descriptions of objects in
immediacy doesn’t involve any modification of the language, if an observer isn’t satisfied
with the description he arrived at, he can spend additional time looking for a better one
while extending his language. In a way, to describe an object optimally observer inadver-
tently must arrive at certain abstractions, even if he had not possessed them before, and we
say that these abstractions are ”in” an object. Also, we have to describe how difficult it is
to arrive at them and how good they are for each observer. Starting from the latter, as in
(Section 2.1) we also assume that observer’s main intent is to make the shortest description
of his history so that the usefulness of each abstraction is measured as far as it aids this
objective. As for derivability, we state that an object implies abstractions unequally in pro-
portion to their goodness (Equation 4.2). And since we only examine one facet of extracting
abstractions in a uniform order, from (Section 3.1), we also discount the goodness of an ob-
ject by their total amount present. Taken together, the goodness of a thing for an observer
with a language Λ and a history H is proportional to the availability of good abstractions
in it discounted by their derivability:

κ(x | H,Λ) =
∑

λ∈λ(xΛ)

κ(λ | x,Λ)
|λ(xΛ)|

κ(λ | H,Λ) (4.3)
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Objects which yield a few but strong abstractions are in higher regard than those with
plenty but shallow ones. The more complex or ”lengthy” is an object, the more abstractions
it would have by inevitability, hence we prefer things simple as possible but not too simple.
We also don’t regard any already known abstractions by an observer condescendingly so
that any cliches or banalities, unless they have some utility, are treated as nothingmore than
dead weight. Also, we don’t care about the origin or the creator of an object we consider,
except when it’s due to constructing a corresponding description using this information. In
summary, to state anything about an object’s goodness, we only need to examine how good
are abstractions present in their descriptions.
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Chapter 5

Proof of concept

5.1 Number-list language

As a preliminary example, consider a trivial language describing lists of natural numbers.
Numbers are encoded using Church numerals and lists, by a function that takes an element
and a list (starting with an empty one) and prepends an element to it.

Table 5.1: Primitives from the number-list language

name description λ-term
0 zero (λsz.z)
S successor function (λnsz.(s((ns)z)))
ø empty list (λx.x)
. list constructor (λhtf.((fh)t))

Here λ-terms are shown for demonstrative purposes, in the implementation primitives
are assigned constants. Using this language, so far, there’s only one way to describe lists
which is the primitive one as shown in (Table 5.1). Given this particular list x, using (Equa-
tion 4.2), we canmeasure the goodness of abstractions taken from λ(xΛ), a handful of which
are shown in (Figure 5.2), where brackets denote free variables with number and list types.
Despite that, it’s evident that defining shorthands for numbers is first-most expedient, we
ignore this suggestion and, for illustrative purposes, select two different abstractions (Fig-
ure 5.3), give them appropriate names, and include them in our language. As a result, it’s
now possible to describe x in a few more ways, one of which is the shortest (Figure 5.4).

x = [1, 2, 3]

xΛ0 = (. (S 0) (. (S (S 0) (. (S (S (S 0))) ø)))

FiguRe 5.1: The primitive description from the number-list language



Chapter 5. Proof of concept 12

FiguRe 5.2: Relative goodness of abstractions

starts-with-1-and-2←→ (λx.(. (S 0) (. (S (S 0) x)))

ends-with-3←→ (. (S (S (S 0)) ø)

FiguRe 5.3: Additional abstractions for the number-list language

xΛ1 = (starts-with-1-and-2 (. (S (S (S 0)) ø))
xΛ2 = (. (S 0) (. (S (S 0)) ends-with-3)

xΛ∗ = xΛ3 = (starts-with-1-and-2 ends-with-3)

FiguRe 5.4: Descriptions using abstractions from the number-list language
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5.2 Scales language

As for a more involved example, we will make descriptions of jazz licks, which are short but
informationally very dense pieces of monophonic music. We choose this domain due to the
simplicity and the compressibility of musical phrases, which are not unindicative of their
inherent expressivity. What follows is a little introduction to music theory upon which we
build our language for descriptions.

5.2.1 Brief music theory introduction

For simplicity, we’ll be only considering the frequency domain, in so far as we’re interested
only in the frequencies of each musical note. The most fundamental principle in music
is the concept of octave equivalence or octave circularity, where an octave is a difference
between two frequencies, one of which is twice the frequency of the other. The human
ear perceives two such pitches (where the pitch is a perceived frequency) as nearly the
same, and this effect also occurs in other mammals (Wright et al., 2000). With this in mind,
musicians use tuning systems that quantize a range within an octave into some number of
pitches, treating the rest of the frequency space as a continuation of the same pattern. Equal
temperament, the most widespread tuning system in the Western world, divides an octave
into 12 pitches, each equally spaced within the range by a multiple of 12

√
2 of the frequency

of their predecessors. With this quantization, we only need to think about twelve unique
pitches, and to each, we can assign a natural number. It’s common to group pitches to
form a scale, which is a list of strictly ascending (modulo 12) unique numbers. The most
primitive scale is called chromatic, which has all 12 pitches within the octave, while other
popular ones like major scale or pentatonic scale have 7 or 5 total. There are twelve different
variations of each scale, each equivalent up to a shift of all its pitches by another pitch, called
a key. We use scales to construct a more narrow view of the notes, and for that, we need a
concept of indexing a scale which is the same thing as indexing an array. Often with pop
music, the whole song is written in one scale and one the key, yet the same doesn’t hold for
jazz, where both are subject to frequent changes.

chromatic = [C, D♭, D, E♭, E, F, G♭, G, A♭, A, B♭, B]
= [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

minor = [0, 2, 3, 5, 7, 8, 10]

C minor = 0 +minor = [0, 2, 3, 5, 7, 8, 10]

D♭ minor = 1 +minor = [1, 3, 4, 6, 8, 9, 11]

G♭ minor = 6 +minor = [6, 8, 9, 11, 1, 2, 4]

G♭ minor[1, 3, 5] = [6, 9, 1] = [G♭,A,D♭]

FiguRe 5.5: Pitch names, scales and scale indexing

5.2.2 Language

We reuse primitives from the number-list language to construct a new language, where
pitches correspond to numbers and scales and licks to doted pairs. Extra primitives (Table
5.2.2) and abstractions (Figure 5.6) come from music theory. Abstraction 1 defines scales as
equivalences between different scale degrees. Abstraction 2 defines multi-indexing (index-
ing with multiple indices). Abstraction 3 defines relative indexing with special primitives
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↑, ↓, which indexes the next or the previous scale degree from the indexed before. Ab-
stractions 4 and 5 define the looping of relative indices. In the implementation, we don’t
enumerate rules for each special case, but instead, we use wildcard variables and store and
look up context information in e-class analyses. So far, this language enables us to talk
about scales and runs through the scales, but surely it is not exhaustive: there are no con-
cepts of approaches, enclosures, or even relative progression of chords, but for our purposes
of making slightly more high-level descriptions it is sufficient enough.

Table 5.2: Primitives from the scales language

N natural numbers (Church numerals)
minor, diminished, etc. scales
scale[N] indexing of the scale
N + scale[N] shift key of the scale (e.g. D♭ minor)
↑, ↓ next, previous index (+1, -1)
loop N ↑, ↓ repeat ↑, ↓ N times

1. D♭ chromatic[1]←→ D♭ minor[1]←→ C locrian[2]←→ F minor[6] etc.

2. D♭ minor[1], D♭ minor[2]←→ D♭ minor[1, 2]

3. D♭ minor[1, 2]←→ D♭ minor[1, ↑]

4. D♭ minor[↑]←→ D♭ minor[loop 1 ↑]

5. D♭ minor[loop N ↑, ↑]←→ D♭ minor[loop N+ 1 ↑]

FiguRe 5.6: Abstractions for the scales language

5.2.3 Descriptions

A jazz lick, being simply a collection of some pitches, can be primitively described as a list
of numbers, the same way as in the number-list language. Starting from this primitive de-
scription embedded in e-graphwe use previously defined language to findmore compressed
representations, finishing with the one of the shortest length, one which we visualize to-
gether with the sheet music representation as in (Figure 5.7).1 We use the example of the
scales language to show that it’s possible to arrive at a representation that will loosely re-
semble something coherent, or something which can be seen as a result of some theory
analysis, by principles we’ve examined in the preceding sections. Next, we employ those
descriptions to compare jazz licks among themselves.

5.2.4 Comparison

To measure subjective goodness, we need some language and some history of observations,
both of which are strenuous to apprehend empirically. Nevertheless, we make some con-
cessions: we set the observer’s language to be the language we’ve described so far and his
history of experience to a seamless concatenation of jazz licks in a randomized order. The
subjective goodness measured in this way must be skewed towards long licks since they
constitute a larger portion of the observer’s auditory experience and, by themselves, ex-
plain most of it. Due to that, we also plot lengths of each lick (number of notes wise) and

1The rest of jazz licks together with their descriptions, and their sources can be found in the appendix
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FiguRe 5.7: Description of a jazz lick in the scales language

lengths of their minimal descriptions in our scales language (Figure 5.9). Implementation-
wise, to reduce the computation time needed to measure the goodness of individual licks,
we select abstractions from each lick by using only one step of inverse β-reduction, plus
we don’t integrate all of the descriptions (given how our language is constructed there is
a countless amount of which), instead, we take the shortest description plus one thousand
randomly sampled ones, for both the history and licks.

As for the final comparison (Figure 5.8), while we personally more or less agree on the
ranking given, we might do so for different reasons since we speak a bit different language
from the one shown here and our experiences are way unalike.

FiguRe 5.8: Subjective comparison of jazz licks

It’s evident that there is some correlation between length and subjective goodness by
construction, yet there is also an inverse relationship between subjective goodness and sim-
plicity of descriptions, which is something we contemplated in (Section 2.1). And since it’s
practically unfeasible to come up with a more justified experiment, which wouldn’t make
arbitrary assumptions just as we did, our goal is more than fulfilled since what we were
interested in was a procedure by which posed in the very beginning questions could be
answered, not as much in the exact answer by itself.
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FiguRe 5.9: Note wise and description wise lengths of jazz licks
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Chapter 6

Conclusion

We presented a simple model of perception and the possible way of distinguishing between
objects based on their subjective beauty. However, this approach remains way too primitive
and also desperate for experimental validation or some other form of justifying it. At heart,
what led up to here was an elementary strive at postulating bare essential primitives that
must play some part in determining the artistic value. Yet it’s hard to delineate what actual
little part of the appreciation of art takes appreciation of the form only and not thinking
of the higher-order, which even further diminishes any formal attempt at addressing the
question. Even with that in mind, concepts of compression and multiple descriptions of
which we spoke at length must partake in whichever the actual answer is.

Most computer users nowadays are not aware of how rudimental compression algo-
rithms are in the inner workings of computers nor that they are constantly using a large
pool of them. We draw an analogy further: we’re likewise unaware of how much art influ-
ences our thinking and how important it is in shaping our vision of the world. We view art
as the storage or sharing of compressed sensations or compression algorithms. Further, we
view any artwork as a puzzle piece, solving (making sense of) which acquires a procedure
that is helpful in solving similar puzzles. Solving an unseen puzzle is hard while solving a
”seen” one is trivial. Solving a puzzle set all at once (a process sure strange enough to be
even considered) is much more diffucult than solving each at a time and even more difficult
than using solutions already made by someone, which is why it’s easier to view one’s life
in terms of existing art and not be an artist oneself.

As far as the comparison between objects goes, we conclude that for a thing having a
short description is obviously good, but enabling an observer to enrich his language with
powerful abstractions, such that a lot of other things will become far easier to comprehend,
is somuch better. The thesis of thiswork is that to define goodness one only needs the notion
of representation, since by virtue of making sense of a good thing, that is by searching for
short representations of it, one also acquires abstractions that are helpful at representing
things in general.
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Appendix A

Code is available at ogoremeni/revel written using Python 3.10. Implementation of e-graphs
is inspired by (Zucker, 2021) [Julia], by Metatheory.jl (Cheli, 2021) [Julia] and by the egg
library (Willsey et al., 2021) [Rust, pseudocode]. Implementation of λ-calculus with de-
Bruijn index is inspired by (Tsú-thuàn, 2020) [Racket]. Sheet music visualization was done
with the help of Musescore software1 and music21 library (Cuthbert and Ariza, 2010).

1https://musescore.org/en

https://github.com/ogoremeni/revel
https://musescore.org/en
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Appendix B

We describe eight jazz licks: each referred to after a jazz pianist who came up with it, except
for ”The Lick”, which is its own kind. Here they are listed in the order as in the comparison
from (Figure 5.8). Transcriptions used are from various sources.1, 2, 3, 4

1https://youtu.be/i5kR8Sn09CI
2https://youtu.be/JfnExW0iV_o
3https://musescore.com/user/34106726/scores/6515974
4https://musescore.com/user/3142241/scores/2298111

https://youtu.be/i5kR8Sn09CI
https://youtu.be/JfnExW0iV_o
https://musescore.com/user/34106726/scores/6515974
https://musescore.com/user/3142241/scores/2298111
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